字段 | 字段内容 |
---|---|
02 | |
001 | 02h1337358 |
003 | OCoLC |
005 | $2: 0230628155403.0 |
008 | $1: 81108s2019 flu b 001 0 eng d |
010 | $a: 2018030735 |
020 | $a: 1138500798 |
040 | $a: DLC$b: eng$c: DLC$e: rda$d: OCLCF$d: YDX$d: OCLCO |
050 | $a: QH447$b: .T53 2019 |
093 | $a: Q343.1$2: 5 |
245 | $0: 0$a: Modeling the 3D conformation of genomes /$c: edited by Guido Tiana, Luca Giorgetti. |
246 | $a: Modeling the three-dimensional conformation of genomes |
264 | $a: Boca Raton, FL :$b: CRC Press, Taylor & Francis Group,$c: 2019. |
300 | $a: xvi, 369 pages ;$c: 25 cm. |
336 | $a: text$b: txt$2: rdacontent |
337 | $a: unmediated$b: n$2: rdamedia |
338 | $a: volume$b: nc$2: rdacarrier |
490 | $a: Series in computational biophysics |
504 | $a: Includes bibliographical references and index. |
505 | $a: Preface -- Editor -- Contributors -- 1. Chromosome folding: contributions of chromosome conformation capture and polymer physics -- Part 1: First-Principle Models: 2. Modeling the functional coupling between 3D chromatin organization and epigenome -- 3. The strings and binders switch model of chromatin -- 4. Loop extrusion: a universal mechanism of chromosome organization -- 5. Predictive models for 3D chromosome organization: the transcription factor and diffusive loop extrusion models -- 6. Introducing supercoiling into models of chromosome structure -- 7. Structure and microrheology of genome organization: from experiments to physical modeling -- 8. Analysis of chromatin dynamics and search processes in the nucleus -- 9. Chromosome structure and dynamics in bacteria: theory and experiments -- Part 2: Data-Driven Models: 10. Restraint-based modeling of genomes and genomic domains -- 11. Genome structure calculation through comprehensive data integration -- 12. Modeling the conformational ensemble of mammalian chromosomes from 5C/Hi-C data -- 13. Learning genomic energy landscapes from experiments -- 14. Physical 3D modeling of whole genomes: exploring chromosomal organization properties and principles. |
520 | $a: This book provides a timely summary of physical modeling approaches applied to biological datasets that describe conformational properties of chromosomes in the cell nucleus. Chapters explain how to convert raw experimental data into 3D conformations, and how to use models to better understand biophysical mechanisms that control chromosome conformation. The coverage ranges from introductory chapters to modeling aspects related to polymer physics, and data-driven models for genomic domains, the entire human genome, epigenome folding, chromosome structure and dynamics, and predicting 3D genome structure. |
650 | $a: Genomics$x: Technological innovations. |
700 | $a: Giorgetti, Luca,$e: editor. |
830 | $a: Series in computational biophysics. |
905 | $a: BUCTLIB$d: Q343.1$r: CNY1470.50$e: 6 |
北京创讯未来软件技术有限公司 版权所有 ALL RIGHTS RESERVED 京ICP备 09032139
欢迎第40870753位用户访问本系统